Page last updated: 2024-12-10

1-(4-morpholinyl)-2-[[3-(3-pyridinyl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]thio]ethanone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

1-(4-morpholinyl)-2-[[3-(3-pyridinyl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]thio]ethanone is a chemical compound with the following properties:

* **Chemical Formula:** C17H17N5O2S
* **Molecular Weight:** 355.43 g/mol

This compound, often abbreviated for convenience, is a **potent and selective inhibitor of the enzyme phosphodiesterase 10A (PDE10A)**.

**Why is it important for research?**

PDE10A is an enzyme that plays a significant role in the brain, specifically in the striatum, a region involved in movement, motivation, and reward. It hydrolyzes the cyclic nucleotide messenger molecules cyclic AMP (cAMP) and cyclic GMP (cGMP).

* **Potential for Treating Neurological Disorders:** Inhibition of PDE10A leads to increased levels of cAMP and cGMP, which are known to modulate various neuronal pathways. This has led to research into its potential as a therapeutic agent for neurological disorders such as:
* **Parkinson's Disease:** PDE10A inhibitors could potentially improve motor function and cognitive deficits associated with Parkinson's.
* **Schizophrenia:** PDE10A inhibition may offer a novel approach to treating the cognitive impairments in schizophrenia.
* **Huntington's Disease:** PDE10A inhibitors could potentially be used to improve motor function and reduce neuronal degeneration in Huntington's.
* **Drug Addiction:** PDE10A inhibition may be helpful in reducing the rewarding effects of addictive substances.

**Current Research:**

* **Clinical Trials:** There are currently clinical trials underway investigating the efficacy and safety of PDE10A inhibitors for treating Parkinson's disease and other neurological disorders.
* **Preclinical Studies:** Extensive preclinical studies have demonstrated the efficacy of PDE10A inhibitors in various animal models of neurological disorders, further supporting their potential as therapeutic agents.

**However, it's important to note:**

* **Side Effects:** While PDE10A inhibitors show promising results, they may also have side effects, such as nausea, vomiting, and headache. More research is needed to fully understand the safety profile of these drugs.
* **Early Stages of Research:** PDE10A inhibitors are still in the early stages of development, and it is too early to determine their long-term efficacy and safety.

**Overall, 1-(4-morpholinyl)-2-[[3-(3-pyridinyl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]thio]ethanone is a promising lead compound in the field of neurological drug discovery, offering potential therapeutic benefits for a range of neurological disorders.** However, continued research is essential to fully understand its potential and to address any associated safety concerns.

Cross-References

ID SourceID
PubMed CID5310565
CHEMBL ID1450965
CHEBI ID117170

Synonyms (14)

Synonym
smr000018928
MLS000103836
1-morpholin-4-yl-2-[(3-pyridin-3-yl-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)sulfanyl]ethanone
AB00431211-04
868968-36-9
F1835-0245
1-morpholino-2-((3-(pyridin-3-yl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)thio)ethanone
HMS2256O12
CHEMBL1450965
AKOS024612767
1-(4-morpholinyl)-2-[[3-(3-pyridinyl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]thio]ethanone
Q27203801
CHEBI:117170
1-(morpholin-4-yl)-2-{[3-(pyridin-3-yl)-[1,2,4]triazolo[4,3-b]pyridazin-6-yl]sulfanyl}ethan-1-one
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
triazolesAn azole in which the five-membered heterocyclic aromatic skeleton contains three N atoms and two C atoms.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (11)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, TYROSYL-DNA PHOSPHODIESTERASEHomo sapiens (human)Potency11.22020.004023.8416100.0000AID485290
Chain A, HADH2 proteinHomo sapiens (human)Potency35.71680.025120.237639.8107AID886; AID893
Chain B, HADH2 proteinHomo sapiens (human)Potency35.71680.025120.237639.8107AID886; AID893
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency31.62280.177814.390939.8107AID2147
USP1 protein, partialHomo sapiens (human)Potency44.66840.031637.5844354.8130AID743255
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency35.48130.011212.4002100.0000AID1030
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency56.23410.035520.977089.1251AID504332
cellular tumor antigen p53 isoform aHomo sapiens (human)Potency31.62280.316212.443531.6228AID902
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency25.11890.001815.663839.8107AID894
relaxin receptor 1 isoform 1Homo sapiens (human)Potency17.78280.038814.350143.6206AID2676
Guanine nucleotide-binding protein GHomo sapiens (human)Potency23.73591.995325.532750.1187AID624287; AID624288
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (1)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]